skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Chenghao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With rising global temperatures, urban environments are increasingly vulnerable to heat stress, often exacerbated by the Urban Heat Island (UHI) effect. While most UHI research has focused on large metropolitan areas around the world, relatively smaller-sized cities (with a population 100 000–300 000) remain understudied despite their growing exposure to extreme heat and meteorological significance. In particular, urban heat advection (UHA), the transport of heat by mean winds, remains a key but underexplored mechanism in most modeling frameworks. High-resolution numerical weather prediction (NWP) models are essential tools for simulating urban hydrometeorological conditions, yet most prior evaluations have focused on retrospective reanalysis products rather than forecasts. In this study, we assess the performance of a widely used operational weather forecast model, the High-Resolution Rapid Refresh (HRRR), as a representative example of current NWP systems. We investigate its ability to predict spatial and temporal patterns of urban heat and UHA within and around Lubbock, Texas, a small-sized city located in a semi-arid environment in the southwestern US. Using data collected between 1 September 2023, and 31 August 2024 from the Urban Heat Island Experiment in Lubbock, Texas (U-HEAT) network and five West Texas Mesonet stations, we compare 18 h forecasts against in situ observations. HRRR forecasts exhibit a consistent nighttime cold bias at both urban and rural sites, a daytime warm bias at rural locations, and a pervasive dry bias across all seasons. The model also systematically overestimates near-surface wind speeds, further limiting its ability to accurately predict UHA. Although HRRR captures the expected slower nocturnal cooling in urban areas, it does not well capture advective heat transport under most wind regimes. Our findings reveal both systematic biases and urban representation limitations in current high-resolution NWP forecasts. Our forecast–observation comparisons underscore the need for improved urban parameterizations and evaluation frameworks focused on forecast skill, with important implications for heat-risk warning systems and forecasting in small and mid-sized cities. 
    more » « less
    Free, publicly-accessible full text available November 28, 2026
  2. Urban heat is a growing concern especially under global climate change and continuous urbanization. However, the understanding of its spatiotemporal propagation behaviours remains limited. In this study, we leverage a data-driven modelling framework that integrates causal inference, network topology analysis and dynamic synchronization to investigate the structure and evolution of temperature-based causal networks across the continental United States. We perform the first systematic comparison of causal networks constructed using warm-season daytime and nighttime air temperature anomalies in urban and surrounding rural areas. Results suggest strong spatial coherence of network links, especially during nighttime, and small-world properties across all cases. In addition, urban heat dynamics becomes increasingly synchronized across cities over time, particularly for maximum air temperature. Different network centrality measures consistently identify the Great Lakes region as a key mediator for spreading and mediating heat perturbations. This system-level analysis provides new insights into the spatial organization and dynamic behaviours of urban heat in a changing climate. 
    more » « less
    Free, publicly-accessible full text available November 6, 2026
  3. Free, publicly-accessible full text available August 29, 2026
  4. Free, publicly-accessible full text available August 12, 2026
  5. Free, publicly-accessible full text available June 21, 2026
  6. Free, publicly-accessible full text available June 1, 2026
  7. Free, publicly-accessible full text available February 1, 2026
  8. Reliable and continuous meteorological data are crucial for modeling the responses of energy systems and their components to weather and climate conditions, particularly in densely populated urban areas. However, existing long-term datasets often suffer from spatial and temporal gaps and inconsistencies, posing great challenges for detailed urban energy system modeling and cross-city comparison under realistic weather conditions. Here we introduce the Historical Comprehensive Hourly Urban Weather Database (CHUWD-H) v1.0, a 23-year (1998–2020) gap-free and quality-controlled hourly weather dataset covering 550 weather station locations across all urban areas in the contiguous United States. CHUWD-H v1.0 synthesizes hourly weather observations from stations with outputs from a physics-based solar radiation model and a reanalysis dataset through a multi-step gap filling approach. A 10-fold Monte Carlo cross-validation suggests that the accuracy of this gap filling approach surpasses that of conventional gap filling methods. Designed primarily for urban energy system modeling, CHUWD-H v1.0 should also support historical urban meteorological and climate studies, including the validation and evaluation of urban climate modeling. 
    more » « less
  9. Abstract Global climate changes, especially the rise of global mean temperature due to the increased carbon dioxide (CO2) concentration, can, in turn, result in higher anthropogenic and biogenic greenhouse gas emissions. This potentially leads to a positive loop of climate–carbon feedback in the Earth’s climate system, which calls for sustainable environmental strategies that can mitigate both heat and carbon emissions, such as urban greening. In this study, we investigate the impact of urban irrigation over green spaces on ambient temperatures and CO2exchange across major cities in the contiguous United States. Our modeling results indicate that the carbon release from urban ecosystem respiration is reduced by evaporative cooling in humid climate, but promoted in arid/semi-arid regions due to increased soil moisture. The irrigation-induced environmental co-benefit in heat and carbon mitigation is, in general, positively correlated with urban greening fraction and has the potential to help counteract climate–carbon feedback in the built environment. 
    more » « less